Чтобы удерживать судно без движения над поверхностью воды, необходимо наличие воздушной подушки между днищем судна и поверхностью воды. Создание и сохранение воздушной подушки заслуживает особого внимания. Чтобы расход воздуха из подушки был как можно меньше, необходимо предельно сократить ее периметр при сохранении максимально возможной площади в плане. Это можно сделать, если придать днищу судна на воздушной подушке форму, максимально приближающуюся к форме круга или по крайней мере квадрата.
Дальнейшая возможность уменьшения относительных потерь воздуха из подушки заключается в увеличении размеров судна в плане. Площадь подушки, а стало быть, и ее грузоподъемность, растет пропорционально увеличению линейных размеров судна во второй степени, а периметр, т. е. потери воздуха из подушки, — пропорционально увеличению его размеров в первой степени. Благодаря этому с увеличением размеров судна можно либо уменьшить расход воздуха, отнесенный к одной тонне массы судна, либо увеличить высоту воздушной подушки. Совершенно ясно, что при одинаковой высоте воздушной подушки более крупные суда будут экономичнее.
У малых судов на воздушной подушке удельная мощность привода главного вентилятора составляет от 45 до 65 кВт на 1 т общей массы судна. Для больших судов, массой около 100 т, требуется уже только 25—35 кВт на 1 т массы, а для судов массой 200 т и больше удельная мощность главных вентиляторов уменьшается до 15—20 кВт. Разумеется, при оценке этих цифр следует помнить, что для поддержания обычного водоизмещающего судна не требуется ни одного киловатта! Экономическая эффективность уже эксплуатируемых сравнительно малых судов на воздушной подушке не может идти ни в какое сравнение с эффективностью судов других типов, особенно если речь идет о перспективных судах.
Все исследовательские работы направлены прежде всего на уменьшение мощности, требуемой для поддержания воздушной подушки. Если бы удалось полностью устранить истечение из нее воздуха, то воздушную подушку нужно было бы создать всего один раз, и дальнейшей подачи воздуха не потребовалось бы. Это стало бы возможным, если к днищу судна по всему периметру прикрепить жесткое ограждение — своего рода колокол, уходящий стенками глубоко в воду. Но в этом случае были бы потеряны все положительные эффекты, направленные на получение высоких скоростей. Истечение воздуха из подушки можно замедлить созданием по всему периметру днища воздушных или водяных завес, применением лабиринтных уплотнений, а также установкой гибких ограждений по всему периметру или жестких ограждений подушки — скегов — по бортам судна. Очень хорошо зарекомендовали себя эластичные юбки из искусственных материалов, простирающиеся до самой поверхности воды (земли) и, тем не менее, свободно пропускающие морские волны или неровности почвы, без передачи ударов на корпус судна. Это обеспечивает безопасность движения судна. С установкой скегов — утопленных ниже поверхности воды тонких жестких бортовых стенок — эффективность воздушной подушки возрастает, но амфибийные качества судна утрачиваются, вследствие чего его вновь с полным правом можно назвать судном.
Схемы образования воздушной подушки
1 — с центральным соплом; 2 — камерная схема с юбкой (гибким ограждением); 3 — камерная схема с жесткими бортовыми ограждениями (скегами); 4 — схема без юбки с кольцевым соплом по периметру подушки; 5 — схема с лабиринтным уплотнением; 6 — схема с юбкой и кольцевым соплом по периметру подушки
Суда на воздушной подушке
1 — амфибийное судно с воздушным винтом; 2 — полуамфибийное судно с водяным гребным винтом; 3 — судно с бортовыми ограждениями воздушной подушки (со скегами) и с Z-образным приводом на водяной гребной винт.